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Distributed computing technologies such as Web Services are growing rapidly in im-

portance in today’s computing environment. In the area of mathematical optimization,

it is common to separate modeling languages from optimization solvers. In a completely

distributed environment, the modeling language software, solver software, and data used

to generate a model instance might reside on different machines using different operating

systems. Such a distributed environment makes it critical to have an open standard for

exchanging model instances.

In this paper we present OSiL (Optimization Services instance Language), an XML-

based computer language for representing instances of large-scale optimization problems

including linear programs, mixed-integer programs, quadratic programs, and very general

nonlinear programs. OSiL has two key features that make it much superior to current

standard forms for optimization problem instances. First, it uses the object-oriented features

of XML schemas to efficiently represent nonlinear expressions. Second, its XML schema

maps directly into a corresponding in-memory representation of a problem instance. The in-

memory representation provides a robust application program interface for general nonlinear

programming, facilitates reading and writing postfix, prefix, and infix formats to and from

the nonlinear expression tree, and makes the expression tree readily available for function

and derivative evaluations.
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1. Introduction

Web Services and other distributed computing technology standards are becoming increas-

ingly important to Internet applications. This trend has growing implications in large-scale

optimization, where modeling language software, solver software, and data used to generate

a model instance might reside on different machines using different operating systems.

Such a distributed environment makes it critical to have an open standard for exchanging

problem instances. By instance we mean a particular problem for which answers can be

sought in the form of specific values for decision variables, in contrast to a model that is

a description of a broad class of optimization problems. Typically a model is a symbolic,

general, concise, and understandable representation of an optimization problem, whereas an

instance is an explicit, specific, verbose, and convenient description of a problem’s objective

and constraints [14]. Thus a model plus data is required to generate an instance. A linear

programming model is typically described by linear algebraic expressions, for example, while

the corresponding instance is represented as a list of nonzero coefficients of variables in the

objective and constraint expressions, along with bounds on the variables and the constraint

expressions.

Current optimization software is hobbled by its reliance on a plethora of instance input

formats, as can be seen by even a cursory look at the list of solvers available on the NEOS

Server ([7, 9] or www-neos.mcs.anl.gov/neos). The nearly 50 solvers in the NEOS lineup

require instance inputs of about a dozen different kinds, including MPS and LP formats

for linear and integer programming, SMPS extensions to the MPS format for stochastic

programming, formats such as SDPA specific to semidefinite programming, DIMACS min-

cost flow and other formats for network linear programming, and proprietary formats used by

two modeling language processors. Other solvers recognize input programmed as functions

in various languages including Fortran, C, C++, and Matlab.

This paper presents OSiL — Optimization Services instance Language — a text-based

format powerful and flexible enough to represent continuous and mixed-integer instances

of linear, quadratic, and very general nonlinear programs. Its underlying principles are

sufficiently powerful to allow for future extensions to such problem areas as cone, constraint,

disjunctive, and stochastic programming. Thus it has the potential to serve as a new standard

that subsumes the many currently used formats for optimization instances.

OSiL’s definition as a so-called XML vocabulary makes it superior to current formats
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for use in the increasingly common distributed optimization contexts that we have cited.

The OSiL standard also incorporates a corresponding data structure and application pro-

gramming interface (or API) that provide solvers with a standard way of extracting instance

data from files written in OSiL. The combination of a common XML format for instance

representation and a common API for data access offers clear benefits to the optimization

community. Modeling language developers are not taxed with creating a separate “driver”

for each supported solver, and solver developers can use essentially the same interface to

connect to all modeling systems and applications.

The demands of web services, object-oriented programming, and nonlinear problem types

make the design of such a standard problem-instance representation much more challenging

than the design of formats for linear problems that were created 50 years ago with punch

cards in mind. Thus the design of OSiL has properly been the focus of a research project

that has extended over several years. This paper is not intended to be a user’s guide to OSiL,

but rather a description of the major features and key design decisions that were necessary

to make OSiL workable. A user’s manual is available at projects.coin-or.org/OS. Other

documentation is available at www.optimizationservices.org.

1.1. Related Work

A number of new standards for instance representation have been proposed (if not widely

adopted) in recent years. Various extensions of the MPS format to nonlinear programming

have been put forward, notably the xMPS format described by Halldórsson, Thorsteins-

son and Kristjánsson [18]. We are also not the first to incorporate XML into this area.

Fourer, Lopes and Martin [13] propose the LPFML XML schema for representing instances

of mixed-integer linear programs; Chang [6] and Kristjflansson [19] have also proposed XML

representations for linear programming instances. Ezechukwu and Maros [10] describe an

Algebraic Markup Language that uses XML to describe the model rather than the instance,

and Bradley [5] introduces an XML markup grammar for networks. See also [4] for a good

overview of the uses of XML technologies in operations research.

One potential alternative to OSiL is Content MathML [25], which is also an XML vocabu-

lary capable of representing general nonlinear optimization. It is not specifically designed for

representing optimization problem instances, however, and after some study we concluded

that it would not be useful. For example, Content MathML is considerably more verbose

than OSiL when representing optimization instances. This is particularly true when a large
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part of the model is linear or quadratic. Furthermore, Content MathML does not contain

key optimization constructs. For example, in Content MathML there is no built-in element

to represent a decision variable with a coefficient and an index. Content MathML is not

under control of the optimization community. This is perhaps the single most important

reason not to use MathML. We can add optimization-related features to OSiL as needed.

Using MathML to support optimization features is awkward at best, and it is unlikely we

can get the W3C to adopt optimization-specific features in a timely fashion. Control of a

standard for optimization is better left to an organization under the control of the Operations

Research community. See [23] for considerably more detail on this decision. Another dialect,

CapeML (A Common Model Exchange Language for Chemical Process Modeling [3]), has

been used in a system for solving dynamic optimization problems via automatic differen-

tiation, but is very domain specific and not designed for broad classes of optimization. In

summary, MathML is too broad and CapeML is too specific.

New API proposals have also been a subject of recent activity. The extensive COIN-

OR (COmputational INfrastructure for Operations Research) project (Lougee-Heimer [21]

or www.coin-or.org) includes the OSI (Open Solver Interface) library, an API for linear

programming solvers, and NLPAPI, a subroutine library with routines for building nonlinear

programming problems. Another nonlinear interface, MOI (Modeler-Optimizer Interface),

is proposed along with xMPS in [18]; it specifies the format for a callable library based

on representing the nonlinear part of each constraint and the objective function in postfix

(reverse Polish) notation [1] and then assigning integers to operators, characters to operands,

and integer indices to variables so that the data structure corresponds to the implementation

of a stack machine. A similar interface is used in the LINDO API [20]. In comparison

to other proposals, our OSiL instance representation is notable for its broader range of

representational options, very flexible API based on an expression-tree representation, and

open source libraries founded on modern XML technology.

1.2. Outline

After providing the requisite background for XML in the next section, we present the OSiL

language in detail in Section 3. We first describe aspects of the language common to all opti-

mization instances, and then describe the OSiL representations of linear programs, quadratic

programs, and general nonlinear programs. A key aspect of our approach to representing
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nonlinear terms in an optimization instance is to use XML elements that all derive from one

base type of element. This idea is developed in Section 3.4.

An OSiL representation of an optimization problem instance may persist in a repository of

test problems, or may be encapsulated in a SOAP envelope for use in a distributed computing

environment. (SOAP stands for Simple Object Access Protocol — a high-level networking

protocol for encapsulating XML data.) To be useful to solvers, however, a problem instance

represented in OSiL must at some point have an analogous in-memory representation. In

Section 4 we describe the object class OSInstance that we have designed for this purpose.

The OSInstance class has an API consisting of get() and set() methods that are used for

extracting components of an optimization instance, or for creating and modifying instances

in memory. The OSInstance class also has a set of calculate() methods for calculating

function values and derivatives (both gradients and Hessians). A key aspect of the in-

memory instance representation is the OSExpressionTree class, which is used for the internal

representation of the nonlinear part of an optimization instance. As explained in Section 4.2,

OSExpressionTree is designed to allow for easy extraction of expressions in postfix, prefix,

and infix formats amenable to solvers, and also to facilitate function and derivative evaluation

as required by solvers during their execution.

In Section 5 we conclude by describing several directions in which this research is con-

tinuing. We are extending OSiL to other problem types, designing and building open-source

libraries for reading and writing OSiL, and pursuing a broader Optimization Services re-

search agenda, described by Ma [23], which provides a host of similarly-named XML lan-

guages for use in optimization over the Internet. The resulting software is available as

a project at the COIN-OR open-source repository for operations research software. See

projects.coin-or.org/OS.

2. XML Background

The logic and advantages of using XML as a markup language to represent optimization

instances are set forth by Fourer, Lopes and Martin [13]. See also the excellent general

overview of XML by Skonnard and Gudgin [26]. This section introduces aspects of XML

relevant to this paper, including the basics of XML files, parsing, and schemas.
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2.1. XML Files

OSiL, our proposed standard, stores optimization problem instances as XML files. Consider

the following problem instance that is a modification of an example of Rosenbrock [24]:

Minimize (1− x0)
2 + 100(x1 − x2

0)
2 + 9x1 (1)

Subject to x0 + 10.5x2
0 + 11.7x2

1 + 3x0x1 ≤ 25 (2)

ln(x0x1) + 7.5x0 + 5.25x1 ≥ 10 (3)

x0, x1 ≥ 0 (4)

We introduce XML by use of illustrations from the corresponding OSiL representation of

this problem.

There are two continuous variables, x0 and x1, in this instance, each with a lower bound

of 0. Figure 1 shows how we propose to represent this information in an XML-based OSiL

file. Like all XML files, this is a text file that contains both markup and data. In this case

there are two types of markup, elements (or tags) and attributes that describe the elements.

Specifically, there are a <variables> element and two <var> elements. Each <var> element

has attributes lb, name, and type that describe properties of a decision variable: its lower

bound, “name”, and domain type.

The actual values of the attributes, such as "0" (zero) for lb and "C" (denoting a con-

tinuous domain) for type, are the data in the file. An attribute may also assume a default

value when it does not appear. For example, the <var> element has a ub attribute that is

absent in Figure 1 and that consequently takes the default value "INF" (denoting ∞).

2.2. XML Schemas

To be useful for communication between solvers and modeling languages, OSiL instance files

must conform to a standard. An XML-based representation standard is imposed through

<variables numberOfVariables="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>

Figure 1: The <variables> element for the example (1)–(4).
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the use of a W3C XML Schema. The W3C, or World Wide Web Consortium (www.w3.

org), promotes standards for the evolution of the web and for interoperability between web

products. XML Schema (www.w3.org/XML/Schema) is one such standard. A schema specifies

the elements and attributes that define a specific XML vocabulary. The W3C XML Schema

is thus a schema for schemas; it specifies the elements and attributes for a schema that in

turn specifies elements and attributes for an XML vocabulary such as OSiL. An XML file

that conforms to a schema is called valid for that schema.

By analogy to object-oriented programming, a schema is akin to a header file in C++

that defines the members and methods in a class. Just as a class in C++ very explicitly

describes member and method names and properties, a schema explicitly describes element

and attribute names and properties.

Figure 2 is a piece of our schema for OSiL. In W3C XML Schema jargon, it defines a

complexType, whose purpose is to specify elements and attributes that are allowed to appear

in a valid XML instance file such as the one excerpted in Figure 1. In particular, Figure 2

defines the complexType named Variables, which comprises an element named <var> and

an attribute named numberOfVariables. The numberOfVariables attribute is of a standard

type positiveInteger, whereas the <var> element is a user-defined complexType named

Variable. Thus the complexType Variables contains a sequence of <var> elements that

are of complexType Variable. OSiL’s schema must also provide a specification for the

Variable complexType, which is shown in Figure 3.

We follow the convention that elements and attributes in the XML instance file begin

with lowercase letters, whereas the user-defined complexTypes begin with uppercase letters.

A complexType (such as Variable) is the XML schema analogue of a class in an object-

oriented programming language, while an element (such as <var>) in the XML instance file

<xs:complexType name="Variables">
<xs:sequence>

<xs:element name="var" type="Variable" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="numberOfVariables"

type="xs:positiveInteger" use="required"/>
</xs:complexType>

Figure 2: The Variables complexType in the OSiL schema.
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corresponds to an instantiated object of a class. Thus we will often refer to complexTypes as

classes and to elements as objects. This object-oriented analogy continues in Section 4 where

we define an OSInstance class that is the in-memory analogue of an OSiL instance file.

Our definition of the Variable complexType allows only the attributes listed in Figure 3

to be present in a <var> element. All of these attributes are specified as optional. Charac-

teristics of the attributes are explicitly defined: the lb attribute must be a double precision

number, for example, and the type must be a string value that is either C, B, I, or S. (These

designate continuous, binary, integer, and string-valued variables, respectively.) We discuss

the OSiL schema in further detail in Section 3.

The key benefit of defining the OSiL schema is to impose a problem instance standard

that can be applied by parsers to validate instance files. If a problem instance is valid then

the parser knows, for example, exactly where in the instance file to locate information on

the constraint upper bounds or to determine if there are integer variables present. Useful

as validation is, however, it is concerned with syntax rather than semantics. For example, a

problem instance file may be valid for the OSiL schema even though it contains a value for

the attribute numberOfVariables in the <variables> element that is not consistent with

the number of <var> elements in the <variables> section; to catch this error requires an

additional check in the parser.

<xs:complexType name="Variable">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="init" type="xs:string" use="optional"/>
<xs:attribute name="type" use="optional" default="C">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="I"/>
<xs:enumeration value="S"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="lb" type="xs:double" use="optional" default="0"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>

</xs:complexType>

Figure 3: The Variable complexType in the OSiL schema.
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Figure 4: The top two levels of the OSiL schema, in tree-diagram form.

3. The OSiL Schema

Our approach is to write a nonlinear optimization problem as a linear program plus collec-

tions of quadratic terms and more general nonlinear expressions. We begin by describing the

aspects of OSiL that are the same for all problem instances. Then we describe how linear,

quadratic, and general nonlinear problems are represented.

We describe OSiL in general terms via its XML schema, and more specifically by use

of the example given by equations (1)–(4). The actual schema file for OSiL resembles the

excerpts in Figures 2 and 3, except that it is much longer and harder to read; it may be

found at www.optimizationservices.org/schemas/OSiL.xsd. In this paper we depict the

schema and its parts by means of tree diagrams, with schema elements and attributes as

the nodes. Specialized schema development software lets people work directly with these

graphical representations.

3.1. OSiL Basics

Figure 4 depicts the top two levels of the OSiL schema in tree-diagram form, as drawn by the

<oXygen/> XML Editor (http://www.oxygenxml.com/). Solid rectangles depict elements.

Thus the <osil> root element is seen to have two child elements. The first such element,

<instanceHeader>, and its child elements are depicted in Figure 4, and the corresponding

parts of the OSiL file for the instance (1)–(4) are shown in Figure 5.

In Figure 4 the “ellipsoid” icon containing four small rectangles denotes a sequence of
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<?xml version="1.0" encoding="UTF-8"?>
<osil xmlns="os.optimizationservices.org">

<instanceHeader>
<name>Modified Rosenbrock</name>
<source>Computing Journal 3:175-184, 1960</source>
<description>Rosenbrock problem with constraints</description>

</instanceHeader>
<instanceData>

.......
</instanceData>

</osil>

Figure 5: The root and <instanceHeader> elements for instance (1)–(4).

elements. Thus the <instanceHeader> element consists of a sequence of <name>, <source>,

and <description> elements. A plain rectangle indicates an element that must appear

exactly once, while a 0..1 icon beneath a rectangle indicates an optional element that may

appear at most once. Thus Figure 4 implies that a valid OSiL file must have exactly one

<instanceHeader> element, which may optionally have one child <name> element.

The second child element of the <osil> root element is the <instanceData> element,

illustrated in Figure 6. This element holds all problem data, and so has a much more

complicated structure.

The first child element of <instanceData> is a <variables> element that comprises one

<numberOfVariables> attribute and a sequence of <var> elements, one for each variable in

the problem instance. Attributes are distinguished from elements by dotted boxes and the

symbol @. Attributes of the <var> elements provide standard information such as domain

type, bounds, and optional names, as illustrated for our example in Figure 7. (We omit the

schema diagrams for <var> and other elements that have no significant child elements.)

The second child element of <instanceData> is an <objectives> element that consists

of a sequence of <obj> elements, one for each potential objective function in the problem

instance. Each <obj> has a set of attributes that include name, maxOrMin, constant, and

weight. If an objective function has linear terms, these are stored in the <coef> child

elements of the <obj> element. For example, in Figure 7 the linear term 9x1 from the ob-

jective function (1) is represented by <coef idx="1">9</coef>, with the attribute idx="1"

indicating that x1 is the variable whose coefficient is being specified as 9.

The third child element of <instanceData> is a <constraints> element that consists of
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Figure 6: Detail of the instanceData element.
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<variables numberOfVariables="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>
<objectives numberOfObjectives="1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">
<coef idx="1">9</coef>

</obj>
</objectives>
<constraints numberOfConstraints="2">

<con ub="25.0"/>
<con lb="10.0"/>

</constraints>

Figure 7: The <variables>, <objectives>, and <constraints> elements for (1)–(4).

a sequence of <con> elements, one for each constraint in the problem instance. The most

important attributes of these elements are the constraint lower and upper bounds, as also

illustrated in Figure 7. A constraint is an equality when its bounds are equal, and is a

one-sided inequality when one or the other bound is absent. Hence the bound attributes

provide the “right-hand side” values for the constraints.

Subsequent child elements of <instanceData> refer to the variables, objectives, and

constraints by index number. Variables and constraints are numbered increasing from 0

according to the order in which they are defined by the <variables> and <constraints>

elements; objectives are similarly numbered but decreasing from −1. Each constraint and

objective thus has a unique index number, which will be seen in Sections 3.3 and 3.4 to be

convenient for locating quadratic and nonlinear terms. We considered requiring identification

of variables, objectives, and constraints by name rather than by index. However, we decided

that the resulting representation would be too verbose and thus names are treated as optional

attributes. The main advantage of requiring names rather than indices would be to help

people read OSiL files, but OSiL is intended to be read by computers rather than by people.

The <variables> element is required and must contain at least one <var> element,

as indicated by the 1..∞ icon beneath the rectangle for the latter in Figure 6. The

<constraints> element is optional because OSiL allows for unconstrained problems, which

are of interest when nonlinear terms are specified in the objective as explained in Section 3.4.
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3.2. Representing Linear Constraints

Almost invariably, most of the linear constraint coefficients in a large optimization problem

are zero. Thus OSiL must adopt the usual approach of recording only the nonzeros. This

is done by use of Figure 6’s <linearConstraintCoefficients> element, which stores the

coefficient matrix using three arrays as proposed in the earlier LPFML schema [13]. There

is a child element of <linearConstraintCoefficients> to represent each array: <value>

for an array of nonzero coefficients, <rowIdx> or <colIdx> for a corresponding array of row

indices or column indices, and <start> for an array that indicates where each row or column

begins in the previous two arrays.

<linearConstraintCoefficients numberOfValues="3">
<start>

<el>0</el><el>2</el><el>3</el>
</start>
<rowIdx>

<el>0</el><el>1</el><el>1</el>
</rowIdx>
<value>

<el>1.</el><el>7.5</el><el>5.25</el>
</value>

</linearConstraintCoefficients>

Figure 8: The <linearConstraintCoefficients> element for constraints (2) and (3).

The choice element group icon immediately preceding the <rowIdx> and <colIdx> ele-

ment rectangles indicates that only one of these may appear in any valid OSiL representation.

Thus the <linearConstraintCoefficients> element may represent the constraint coeffi-

cients either by column or by row. With modern solvers offering to set up the dual problem

or to accelerate calculations by using both row-wise and column-wise lists, it makes sense to

allow for row-wise as well as column-wise specification of coefficients in a new standard.

Individual array entries are specified by <el> children (not shown in Figure 6) of <value>,

<rowIdx> or <colIdx>, and <start>. The <linearConstraintCoefficients> element

for the constraints (2) and (3) of our example is shown (using the column-wise option) in

Figure 8. There are three linear coefficients, one from the linear part of the first constraint

x0 + 10.5x2
0 + 11.7x2

1 + 3x0x1 ≤ 25, and two from the linear part of the second constraint

ln(x0x1) + 7.5x0 + 5.25x1 ≥ 10.
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3.3. Representing Quadratic Terms

Any quadratic expression is easily represented as a general nonlinear expression using the

format to be described in Section 3.4. Nevertheless there are good reasons for including a

special quadratic expression representation in OSiL. Each quadratic term admits a particu-

larly compact representation as a list of index-index-value triples. This representation is also

readily recognized by software that classifies or analyzes optimization problems. Moreover

there are numerous specialized solvers for the case in which the objective and all constraints

are linear or quadratic. These solvers look for the quadratic as well as the linear terms to

be passed to them in full at invocation, rather than being evaluated at particular iterates

as would be required by solvers that accept more general smooth nonlinear functions. A

special representation of quadratic terms in a problem instance facilitates passing the full

list of quadratic terms to the solver.

<quadraticCoefficients numberOfQuadraticTerms="3">
<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>
<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>
<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>

</quadraticCoefficients>

Figure 9: The <quadraticCoefficients> element for constraint (2).

As seen in Figure 6, OSiL represents quadratic terms by <qTerm> child elements of the

<quadraticCoefficients> element. A <qTerm> element has four required attributes: an

integer that indicates the constraint (if nonnegative) or objective to which the term belongs,

two nonnegative integers that specify the indices of the variables in the quadratic term, and a

floating-point number that is the coefficient of the term. Figure 9 illustrates a representation

of the quadratic term for constraint (2) of our example.

We could instead have designed the quadratic representation to be more like the linear

one, with two arrays of variable indices, an array of coefficients, and an array of pointers to

indicate where each objective or constraint begins. Instead we decided to adopt this more

flexible approach, which is analogous to the representation that we chose for nonlinear terms.
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3.4. Representing Nonlinear Terms

General nonlinear terms are represented by the final child of <instanceData> in Figure 6,

the <nonlinearExpressions> element. Our goal for this part of OSiL is to represent a

comprehensive collection of optimization problems while keeping parsing relatively simple.

+ 

^ 

2 - 

1 

x 0 

* 

100 
^ 

- 
2 

x 1 ^ 

x 0 2 

OSnLNodePlus 
<plus> 

OSnLNodePower 
<power> 

OSnLNodeMinus 
<minus> 

OSnLNodeNumber 
<number value=”2"/> 

OSnLNodeNumber 
<number value=”1"/> 

OSnLNodeNumber 
<number value=”100”/> 

OSnLNodeNumber 
<number value=”2"/> 

OSnLNodeNumber 
<number value=”2"/> 

OSnLNodeTimes 
<times> 

OSnLNodePower 
<power> 

OSnLNodePower 
<power> 

OSnLNodeMinus 
<minus> 

OSnLNodeVar 
<variable coef=”1.0”  idx=”0"/> 

OSnLNodeVar 
<variable coef=”1" idx=”1"/> 

OSnLNodeVar 
<variable coef=”1” idx=”0"/> 

Figure 10: Conceptual expression tree for the nonlinear part of the objective (1).

One of our most challenging design issues was to provide general nonlinear expressions

with an XML-based representation that could be easily validated against a schema. Clearly

an expression tree or the equivalent is required for representing each nonlinear term in a

problem instance. As an example, Figure 10 shows how the nonlinear part of the objective

function (1) is represented as an expression tree. The corresponding representation in OSiL

is given in Figure 11. The root of the expression tree is a <plus> element. For purposes

of validation, any schema needs an explicit description of the children allowed in a <plus>

element, but it is clearly inefficient to list every possible nonlinear operator or nonlinear

function allowed as a child element. Indeed, in our OSiL schema we define over two hundred

nonlinear elements. In general, if there are n allowable nonlinear elements (functions and

operators), listing every potential child element, of every potential nonlinear element, leads

to O(n2) possible combinations. This approach is obviously inefficient as the number of

operators grows. Nevertheless, in order to validate the problem instance a schema must

know, for example, that the <plus> element requires exactly two children and that each

child element is an allowed operator or function.
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<nl idx="-1">
<plus>

<power>
<minus>

<number value="1.0"/>
<variable coef="1.0" idx="0"/>

</minus>
<number value="2.0"/>

</power>
<times>

<power>
<minus>

<variable coef="1.0" idx="0"/>
<power>

<variable coef="1.0" idx="1"/>
<number value="2.0"/>

</power>
</minus>
<number value="2.0"/>

</power>
<number value="100"/>

</times>
</plus>

</nl>

Figure 11: The <nl> element for the nonlinear part of the objective (1).

Fortunately, the W3C XML Schema standard addresses this situation, by providing a

construct very similar to that of an abstract class in an object oriented programming language

such as C++ or Java. The use of this construct, called a substitutionGroup, in the XML

schema for OSiL is illustrated in Figure 12.

The first line of Figure 12 defines OSnLNode to be an abstract element type. Think of it

as a “template” for a nonlinear element; in C++ an analogous statement would be

class OSnLNode{ ...
}

The following group of lines in Figure 12 defines OSnLNodePlus to be an “extension” of the

“base” OSnLNode abstract type; the analogous C++ statement would be

class OSnLNodePlus : public OSnLNode{ ...
}

This definition of OSnLNodePlus also specifies that it must have exactly two children, each
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<xs:element name="OSnLNode" type="OSnLNode" abstract="true">

<xs:complexType name="OSnLNodePlus">
<xs:complexContent>

<xs:extension base="OSnLNode">
<xs:sequence minOccurs="2" maxOccurs="2">

<xs:element ref="OSnLNode"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:element name="plus" type="OSnLNodePlus" substitutionGroup="OSnLNode"/>

Figure 12: Defining and using OSnLNode and its extension to OSnLNodePlus.

of which must be an OSnLNode. Thus we avoid the problem of explicitly listing every type

of nonlinear operator and function that may be a child of OSnLNodePlus. Finally, in the last

line of Figure 12 the actual element <plus> is declared, to be of the type OSnLNodePlus that

extends OSnLNode. Like an object that is instantiated in an object-oriented programming

language, the <plus> element is what actually appears in the XML file. An analogous

statement in C++ would be OSnLNodePlus *plus = new OSnLNodePlus().

Armed with the OSnLNode concept, we can represent each parse tree for a nonlinear

expression in an optimization instance as an OSiL element that is easily validated against

a schema. As seen in Figure 6, the <nonlinearExpressions> element contains a sequence

of <nl> children, one for each constraint and objective that has nonlinear terms. The idx

attribute of each <nl> child identifies its corresponding objective function (if negative) or

constraint. Each <nl> element also has a single child element, of type OSnLNode, that

specifies the required nonlinear expression.

Figures 11 and 13 illustrate the <nl> elements for the nonlinear parts of the objective

function (1) and constraint (3), respectively. The OSiL XML representation in Figure 11

corresponds exactly to the structure of the parse tree for the expression in Figure 10. There

is an <nl> node with an index of −1, which indicates the first objective function. The

single child of the <nl> element is a <plus> element which is the root of the expression

tree illustrated in Figure 10. The root element has two children, representing the two sub-

expressions, 100(x1 − x2
0)

2 and (1 − x0)
2, that are added to form the nonlinear part of

the objective function; the <power> child has also two children, representing the sub-sub-
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expressions (1−x0) and 2, that are the base and the exponent of an exponentiation operator;

and so forth. Similarly, in Figure 13, the <nl> element with index 1 (corresponding to the

second constraint) has a single child element <ln> whose child represents the expression

whose natural logarithm is to be taken.

<nl idx="1">
<ln>

<times>
<variable idx="0"/>
<variable idx="1"/>

</times>
</ln>

</nl>

Figure 13: The <nl> element for the constraint (3).

Terminal tree elements have special attributes. The <number> element represents the

literal numerical value given by its value attribute, which must be a floating-point number.

The <variable> element represents a variable whose index is given by the nonnegative

integer idx attribute; an optional floating-point coef attribute is intended mainly for linear

sub-expressions of nonlinear terms.

OSiL is intended to accommodate not only the mathematical operators and functions of

classical continuous optimization, but other “not linear” functions that can be meaningful

in formulations of optimization problems. The OSiL schema defines over 200 OSnLNode

elements, which fall into the following broad categories:

� Arithmetic operator elements: Standard binary arithmetic operators such as <plus>,

<times>, <power>, and <divide>, which take exactly two OSnLnode children. We also

define <sum> and <product> operators that allow an arbitrary number of children, to

avoid unnecessary nesting when there is a summation or product with many terms.

� Elementary function elements: Standard functions such as <abs>, <ln>, <exp>, <sin>,

and <arctan>, which have exactly one OSnLNode child.

� Statistical and probability function elements: A large variety of statistical and probabil-

ity functions such as <mean>, <variance>, <uniform>, <normal>, and <lognormal>,

especially those relevant to applications in finance and operations management.
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� Operand (terminal) elements: The previously mentioned <number> element and the

constant elements <PI>, <E>, <EULERGAMMA>, <TRUE>, <FALSE>, <EPS>, <INF>, and

<NAN>. These have no child elements.

� Variable element: The <variable> element that represents decision variables in an

optimization instance. It may be a terminal element as previously described, or may

have a more general form (see Figure 14) in which the index is specified through

an OSnLNode child element that evaluates to a nonnegative integer. The latter is

important to constraint programming formulations [22, 27] whose variables may be

indexed (“subscripted”) by expressions involving variables.

Figure 14: Detail of the <variable> element, showing its optional child.

� Logic and relational operator elements: Operators to represent numerical relations such

as <leq> and <gt>, and logical relations such as <if>, <and>, and <or>.

� Special elements: Representations for user-defined functions, real time data, and XPath

data references, to be detailed in subsequent extensions.

We have drawn operator and function elements from the supported operators and functions

in Microsoft Excel, in Content MathML (Sandhu [25]), and in standard solvers such as

LINDO [20]. Our naming conventions are consistent with MathML and Excel.

In the OSiL representation of (1)-(4) we have taken the linear and quadratic terms in gen-

eral nonlinear constraints and put them respectively into the <linearConstraintCoefficients>

and <quadraticCoefficients> sections. This may be desirable for taking advantage of

structure, however this is not necessary and the linear and quadratic terms can all be put

into the <nonlinearExpressions> section.
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4. The OSInstance Class

The OSiL schema defines an XML vocabulary for storing an optimization instance. This

instance may persist in a repository of test problems, or it may temporarily be encapsulated

in a SOAP envelope for use in a distributed computing environment. However, at some point

before the instance is optimized by a solver, it must be stored in memory.

Our OSInstance class is the in-memory representation of an optimization instance. This

class has an API defined by a collection of get() methods for extracting various components

(such as bounds and coefficients) from a problem instance, a collection of set() methods for

modifying or generating an optimization instance, and a collection of calculate() methods

for function, gradient, and Hessian evaluations. We now describe the close relationship

between the OSiL schema and the OSInstance class.

4.1. Mapping Rules

As shown in Figure 15, the OSInstance class has two member classes, InstanceHeader and

InstanceData. These correspond to the OSiL schema’s complexTypes instanceHeader and

instanceData (Figure 4), and to the XML elements <instanceHeader> and <instanceData>

(Figure 5).

Moving down one level, Figure 16 shows that the InstanceData class has in turn the

member classes Variables, Objectives, Constraints, LinearConstraintCoefficients,

QuadraticCoefficients, and NonlinearExpressions, corresponding to the complexTypes

in Figure 6 and the elements in Figures 7–9 and 11–13.

class OSInstance{
public:

OSInstance();
InstanceHeader *instanceHeader;
InstanceData *instanceData;

}; //class OSInstance

Figure 15: The OSInstance class

Figure 17 uses the Variables class to provide a closer look at the correspondence between

schema and class. On the right, the Variables class contains a number data member and a
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class InstanceData{
public:

InstanceData();
Variables *variables;
Objectives *objectives;
Constraints *constraints;
LinearConstraintCoefficients *linearConstraintCoefficients;
QuadraticCoefficients *quadraticCoefficients;
NonlinearExpressions *nonlinearExpressions;

}; // class InstanceData

Figure 16: The InstanceData class

sequence of var objects of class Variable. The Variable class has lb (double), ub (double),

name (string), init (double), and type (char) data members. On the left the corresponding

XML complexTypes are shown, with arrows indicating the correspondences. The following

rules describe the mapping between the OSiL schema and the OSInstance class.

. Each complexType in an OSiL schema corresponds to a class in OSInstance. Thus the

OSiL schema’s complexType Variable corresponds to OSInstance’s class Variable.

Elements in an actual XML file then correspond to objects in OSInstance; for example,

the <var> element that is of type Variable in an OSiL file corresponds to a var object

in class Variable of OSInstance.

. An attribute or element used in the definition of a complexType is a member of the cor-

responding OSInstance class, and the type of the attribute or element matches the type

of the member. In Figure 17, for example, lb is an attribute of the OSiL complexType

named Variable, and lb is a member of the OSInstance class Variable; both have

type double. Similarly, var is an element in the definition of the OSiL complexType

named Variables, and var is a member of the OSInstance class Variables; the var

element has type Variable and the var member is a Variable object.

. A schema sequence corresponds to an array. For example, in Figure 17 the complex-

Type Variables has a sequence of <var> elements that are of type Variable, and the

corresponding Variables class has a member that is an array of type Variable.

General nonlinear terms are stored in the data structure as OSExpressionTree objects,

which are the subject of the next section.
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The OSInstance class has a set of get() , set(), and calculate() methods that act

as an API for the optimization instance. The get() methods are used by other classes

to access data in an existing object. For example, the method getOSInstance() of the

OSiLReader class parses an OSiL file and returns a corresponding object osinstance of

type OSInstance. Then the nonzero coefficient values in the linear terms of the constraints

are retrieved in column major form by

osinstance->getLinearConstraintCoefficientsInColumnMajor()->values

and in other forms by analogous calls. Similarly, the set() method provides an API for

Schema complexType In-memory class

<xs:complexType name="Variables"> <----------------------------------------------> class Variables{

public:

<xs:sequence> Variables();

<xs:element name="var" type="Variable" maxOccurs="unbounded"/> <-------------> Variable *var;

</xs:sequence>

<xs:attribute name="number" type="xs:positiveInteger" use="required"/> <------> int number;

</xs:complexType> }; // class Variables

<xs:complexType name="Variable"> <-----------------------------------------------> class Variable{

public:

Variable();

<xs:attribute name="name" type="xs:string" use="optional"/> <------------------> string name;

<xs:attribute name="init" type="xs:double" use="optional"/> <------------------> double init;

<xs:attribute name="initString" type="xs:string" use="optional"/> <------------> string initString;

<xs:attribute name="type" use="optional" default="C"> <------------------------> char type;

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="B"/>

<xs:enumeration value="I"/>

<xs:enumeration value="S"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="lb" type="xs:double" use="optional" default="0"/> <--------> double lb;

<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> <------> double ub;

</xs:complexType> }; // class Variable

OSiL elements In-memory objects

<variables number="2"> OSInstance osinstance;

<var lb="0" name="x0" type="C"/> osinstance.instanceData.variables.number=2;

<var lb="0" name="x1" type="C"/> osinstance.instanceData.variables.var=new Variable[2];

</variables> osinstance.instanceData.variables.var[0].lb=0;

osinstance.instanceData.variables.var[0].name=x0;

osinstance.instanceData.variables.var[0].type=C;

osinstance.instanceData.variables.var[1].lb=0;

osinstance.instanceData.variables.var[1].name=x1;

osinstance.instanceData.variables.var[1].type=C;

Figure 17: The <variables> element as an OSInstance object
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creating or modifying an OSInstance. The calculate() methods are discussed in Sec-

tion 4.2.2.

4.2. Nonlinear Expressions

Perhaps the greatest challenge posed by OSInstance lies in the OSExpressionTree class,

which provides the in-memory representation of the nonlinear terms. Our goal in designing

OSExpressionTree has been to allow for efficient parsing of OSiL instances, while providing

an API that meets the needs of diverse solvers.

Conceptually, any nonlinear expression in the objective or constraints is represented by

a tree. The expression tree for the nonlinear part of the objective function (1), for example,

has the form illustrated in Figure 10. The choice of a data structure to store such a tree

— along with the associated methods of an API — is a key aspect in the design of the

OSInstance class.

One approach uses a C-style structure (a struct or union) for each node in the expression

tree. The ASL data structure [16] of the AMPL modeling language [12, 15] has this form.

The structure stores information as to operator or operand type, along with pointers to child

nodes. Thus a tree-walking method may be used to perform operations on the expression

such as function or derivative evaluations. Figure 18 illustrates the essential idea (from [11])

in the context of function evaluation; expr is a C structure that represents nodes of the

expression tree, *e is a particular node passed to the function, and opnum is an integer value

in the structure, denoting the node type. A fundamental problem with this approach is

that every method that operates on the expression tree requires a whole series of switch

statement case clauses, making for a very large function. Updating the code to reflect new

operators requires modifying every such method, risking the introduction of errors.

A second approach is to use an object-oriented language such as C++ or Java and to

define a class for each type of node in the expression tree: a “plus” node class, a “minus”

node class, an “exponential function” class, and so forth. So that switches and complicated

logic are avoided as much as possible, this is implemented by having each node class extend

a single fundamental node abstract class, OSnLNode, using the object-oriented concept of

polymorphism. We have adopted this alternative in our implementation.

The design of the OSInstance API also provides the flexibility to work with different

types of nonlinear solvers. For example, the API has a method that can return a list of

OSnLNodes in postfix format, making it easy to communicate with a solver such as LINDO
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double calculateFunction (expr *e, double x[]){
...
opnum = e->op
switch(opnum){

case PLUS_opno: ...
return( calculateFunction(e->L.e, x) + calculateFunction(e->R.e, x) );

case MINU_opno: ...
...

}
}

Figure 18: Excerpt from a function calculation method without polymorphism

that expects a postfix instruction list as part of its initial input. A similar method returns a

prefix instruction list. Another part of the API supplies calculate() methods to work with

solvers such as IPOPT and KNITRO that use callbacks to evaluate function and derivative

values at specific iterates, as described in section 4.2.2.

4.2.1. The OSnLNode Class

As Section 3.4 has explained, all of an OSiL file’s operator and operand elements used in

defining a nonlinear expression are extensions of the base element type OSnLNode. There

is an element type OSnLNodePlus, for example, that extends OSnLNode; then in an OSiL

instance file, there are <plus> elements that are of type OSnLNodePlus.

The OSExpressionTree class and its API follow an identical design, based on the ab-

stract class OSnLNode. Specifically, each OSExpressionTree object contains a pointer to an

OSnLNode object that is the root of the corresponding expression tree. To every element

that extends the OSnLNode type in an OSiL instance file, there corresponds a class that

derives from the OSnLNode class in an OSInstance data structure. Thus we can construct

an expression tree of homogenous nodes, and methods that operate on the expression tree to

calculate function values, derivatives, postfix notation, and the like do not require switches

or complicated logic.

The OSInstance class has a variety of calculate() methods, based on two pure virtual

functions in the OSInstance class. The first of these, calculateFunction(), takes an

array of double values corresponding to decision variables, and evaluates the expression

tree for those values. Every class that extends OSnLNode must implement this method.
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double OSnLNodePlus::calculateFunction(double *x){
m_dFunctionValue =

m_mChildren[0]->calculateFunction(x) +
m_mChildren[1]->calculateFunction(x);

return m_dFunctionValue;
} //calculateFunction

Figure 19: The function calculation method for the “plus” node class with polymorphism

As an example, the calculateFunction method for the OSnLNodePlus class is shown in

Figure 19. Because the OSiL instance file must be validated against its schema, and in the

schema each <OSnLNodePlus> element is specified to have exactly two child elements, this

calculateFunction method can assume that there are exactly two children of the node that

it is operating on. Thus through the use of polymorphism and recursion the need for switches

like those in Figure 18 is eliminated. This design makes adding new operator elements easy;

it is simply a matter of adding a new class and implementing the calculateFunction()

method for it.

4.2.2. Automatic Differentiation

Gradient and Hessian calculations via callbacks at specified iterates are carried out by use of

automatic differentiation (AD) [17]. This is the same approach used by proprietary interfaces

between modeling languages and nonlinear solvers; it can be much faster than symbolic

differentiation, but unlike finite differencing it gives up nothing in accuracy.

To provide AD services, a second pure virtual function is introduced into the OSInstance

class. In our initial implementation this function, constructCppADTape(), builds an AD

“tape” that is read by CppAD, a robust and efficient AD package developed by Bradley

Bell [2]. Each differentiable operator class that extends OSnLNode must implement a method

based on this package, which makes heavy use of C++ operator overloading; Figure 20

illustrates taping the plus operator.

The calculate() methods in the OSInstance class for first and second derivative cal-

culations are built on the CppAD facilities. These methods operate in two phases, first

constructing the tape and then using it to compute the requested derivatives. For example,

the API method calculateAllConstraintFunctionGradients() tapes an operation se-

quence by applying constructCppADTape() to the nonlinear part of each objective function

and constraint, then uses the CppAD method Jacobian to calculate first partial deriva-
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AD<double> OSnLNodePlus::constructCppADTape(std::map<int, int> *cppADIdx,
CppAD::vector< AD<double> > *XAD){

m_CppADTape =
m_mChildren[0]->constructCppADTape( cppADIdx, XAD) +
m_mChildren[1]->constructCppADTape( cppADIdx, XAD);

return m_CppADTape;
} //calculateCppADTape

Figure 20: The AD function taping method for the “plus” node class

tives. This method returns a SparseJacobian object that contains the values of the partial

derivatives, their sparsity pattern, and information (useful to some solvers) on which par-

tial derivatives are constant. Likewise there is a method to return the sparsity pattern and

second derivatives for the Hessian of the Lagrangian function.

5. Conclusions and Future Work

OSiL is an XML-based language for representing general nonlinear optimization instances. It

represents a major advance over the old MPS format for linear and integer problems. There

are open-source C++ libraries available at projects.coin-or.org/OS that implement all

of the features described in this paper including special sparse treatments of linear and

quadratic components of a model instance. These libraries implement classes described in

this paper for writing, validating, and parsing optimization instances in the OSiL format. In

addition, the OSInstance class with its get(), set(), and calculate() methods provides

a powerful API to interface with modeling languages and solvers. It is the flexible design

of the OSInstance class with its underlying OSExpressionTree class (see Section 4.2) that

provides first and second derivative information for solver callback functions or the instance

representation in postfix or prefix instruction list format. Examples are given in a User’s

Manual available at https://projects.coin-or.org/OS.

The design of OSiL and the corresponding in-memory OSInstance class has also facili-

tated the development of libraries for feeding any instance in OSiL format into the following

commercial and open-soruce solvers: Cbc, Clp, Cplex, DyLP, Glpk, Knitro, Lindo, SYM-

PHONY, and Vol. On the modeling language side we have a component amplClient that

provides access from the AMPL modeling language to any solver (including those mentioned

above) that recognizes OSiL files, in much the same way that the Kestrel client [8] provides
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access from AMPL to the NEOS Server [7, 9].

It terms of future work, we are in the process of extending the OSiL schema to include

other classes of optimization problems, such as optimization under uncertainty, semidefinite

and cone programming, constraint programming, disjunctive programming, and optimization

of simulations. Each class has its own special features that pose new kinds of challenges.

Finally, OSiL is only one schema in a much larger OS — Optimization Services — frame-

work [23]. Of most immediate concern, the OS framework is planned to incorporate OSoL

(Optimization Services option Language) for passing algorithmic options to solvers, and OSrL

(Optimization Services result Language) for passing results back to modelers and modeling

systems. These languages are an initial part of a complete system that allows for platform-

independent synchronous and asynchronous communication between client modeling systems

and optimization solvers in a distributed environment.
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